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There are two good reasons for trying to identify kinetic

mechanisms for receptors. Firstly, it is only by doing so

that one can study sensibly the effect of structure changes

in agonists (for example, does the change in structure alter

the ability to bind, or the ability of the agonist to activate

the receptor once bound?). Secondly, it is only by doing so

that the effect of mutations in a receptor can be studied

rationally (for example, does the mutated residue form

part of the agonist binding site?). These questions have

been reviewed by Colquhoun (1998).

In order to answer the questions of interest, two things

must be done. First a qualitative reaction scheme must be

postulated, and then values for the rate constants in the

scheme must be found. In many ways the first step is the

harder, because unless the reaction scheme is a sufficiently

good description of actual physical structural reality, it

cannot be expected that physically meaningful conclusions

can be drawn from it.

The only sort of receptor for which it has so far been

possible to achieve these aims are the agonist-activated ion

channels, and then only by observation of single ion

channels. In earlier studies (e.g. Colquhoun & Sakmann,

1981, 1985), rate constants in the mechanism could not be

estimated directly. Rather, individual distributions (shut

times, open times, burst lengths etc.) were fitted separately

with arbitrary mixtures of exponential distributions (e.g.

Colquhoun & Sigworth, 1995), and correlations between

these quantities were measured separately. It was not

possible to take into account all of the information in the

record simultaneously, so information from individual

distributions had to be cobbled together in a rather

arbitrary way to infer values for the rate constants in the

mechanism. It was also not possible to make proper

allowance for the inability to resolve brief events in a single

channel record. Since that time, better methods of analysis

have been devised, the most appealing of which is to

maximise the likelihood of the entire sequence of open and

shut times. The appeal of this method stems from the facts

that (a) it provides estimates of the rate constants in a

specified mechanism directly from the observations, (b) it

is based on measurements of open and shut times (an

‘idealisation’ of the observed record), so the user has a

chance to check the data going into the calculation, (c) the

calculation can be carried out without having to choose

arbitrarily which particular distributions to plot and (d) it

takes into account correctly the fact that in most real

records subsequent intervals are not independent of one

another (it is common, for example, to find that long open

times are followed on average by short shut times), and
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uses all of the information in the observed record in a

single calculation (Fredkin et al. 1985). Since, in the usual

general treatment of ion channels, the rate constants for

the connections between each pair of states are tabulated

in the Q matrix, it may be said that the method provides an

estimate of the Q matrix. The method was first proposed

by Horn & Lange (1983), but at that time it was not

possible to allow for the fact that brief events cannot be

seen in experimental records. The implementation of the

method by Ball & Sansom (1989) had the same problem.

Since many brief events are missed in most experimental

records, the method was not useable in practice until this

problem had been solved. Ball & Sansom (1988a,b) gave

the exact solution for the missed events problem in the

form of its Laplace transform, and various approximate

solutions have been proposed too, the best of which

appears to be that of Crouzy & Sigworth (1990) (see

Hawkes et al. 1990; Colquhoun & Hawkes, 1995b).

However there is no longer any need for approximations

because the exact solution to the problem has been found

by Hawkes et al. (1990, 1992).

Two computer programs are available for doing direct

maximum likelihood fitting of rate constants, MIL (Qin et
al. 1996, 1997) and HJCFIT (Colquhoun et al. 1996). The

MIL program is available at http://www.qub.buffalo.edu/

index.html and HJCFIT from http://www.ucl.ac.uk/

Pharmacology/dc.html. The former uses (a corrected form

of) the approximate missed event method of Roux & Sauve

(1985); the latter uses the exact solution.

It is the responsibility of anyone who proposes an estimation

method to describe the properties of the estimators, and in

this paper we describe some of the properties of estimates

of rate constants found with HJCFIT. This provides the

background for the method, and the necessary justification

for the use of HJCFIT to analyse experimental results on

nicotinic receptor channels in the accompanying paper

(Hatton et al. 2003).

METHODS
Resolution and observed events
The durations of openings and shuttings that are measured from
an experimental record are extended by the failure to detect brief
openings and shuttings. These measured values will be referred to
as apparent or extended durations. It is crucial when making
allowance for missed brief events that the data should have a well-
defined time-resolution (tres) or dead-time, defined so that all
events shorter than tres are omitted, and all events longer than tres

are present in the record. This is easily achieved by retrospective
imposition of a fixed resolution on the data, as described by
Colquhoun & Sigworth (1995). This is also desirable even for
fitting of empirical distributions (by programs such as our
EKDIST), so it is surprising that most other programs that are
available, both free and commercial, still do not incorporate this
ability. An extended open time, or e-open time is defined for
theoretical purposes as the duration of an event that (a) starts
when an opening longer than tres occurs and (b) continues until a

shutting longer than tres is encountered. The e-opening can
therefore contain any number of shuttings, as long as they are all
shorter than tres, separating openings that may be of any length
(except for the first, which must be greater than tres) (Ball &
Sansom, 1988a; Hawkes et al. 1990, 1992). The method used in
HJCFIT (and EKDIST) for imposition of a fixed resolution
follows, as closely as possible, this theoretical definition, though in
real records there will always be a few events that cannot be
interpreted unambiguously even by time course fitting, in
particular those that consist of several contiguous brief events in
quick succession (e.g. Colquhoun & Sigworth, 1995).

Distributions of observed events
The theoretical distributions of extended open times etc. will be
referred to as HJC distributions because they are calculated by the
methods of Hawkes et al. (1990, 1992). In contrast, the ideal
distributions would be calculated by the simpler methods of
Colquhoun & Hawkes (1982) on the assumption that no events
are missed.

The ideal (tres = 0) distribution (probability density function, pdf)
of an open time is:

fo(t) = fA GAF(t) uF, (1)

where fA is a 1 w kA row vector giving the probabilities that the first
opening starts in each of the open states (kA = number of open
states), uF is a kF w 1 unit column vector (kF = number of shut
states) and GAF is a kA w kF matrix defined by Colquhoun &
Hawkes (1982); it can be calculated from the Q matrix (see also
Colquhoun & Hawkes, 1995a,b). The HJC distribution of the
duration of an apparent opening can be written using an
analogous notation as:

fo(t) = fA
eGAF(t) uF, (2)

where eGAF is the HJC analogue of GAF (the simplicity of the
notation disguises the fact that the calculation of the former is a
good deal more complicated than calculation of the latter).
Exactly analogous results hold for distribution of shut times.

The likelihood, l, of a whole sequence of observed (apparent) open
and shut times can now be calculated, as described by Colquhoun
et al. (1996), as:

l = fA
eGAF(to1)

eGFA(ts1)
eGAF(to2)

eGFA(ts2)
eGAF(to3)... uF, (3)

where to1, to2,...represent the first, second apparent open time and
ts1, ts2,...first, second apparent shut time, etc. Note that openings
and shuttings occur in this expression in the order in which they
are observed. Thus fA is a 1 w kA row vector giving the probabilities
that the first opening starts in each of the open states, fA

eGAF(to1) is
a 1 w kF row vector the elements of which give the probability
density of the open time to1 multiplied by the probabilities that the
first shut time, ts1, starts in each of the shut states given that it
follows an opening of duration to1. Then fA

eGAF(to1)
eGFA(ts1) is a

1 w kA row vector, the elements of which give the probability
density of (to1, ts1) multiplied by the probabilities that the next
open time, to2, starts in each of the open states given that it follows
an opening of duration to1 and a shut time of duration ts1. This
continues up to the end of the observations. The process of
building up the product in eqn (3) gives, at each stage, the joint
density of the time intervals recorded thus far multiplied by a
vector that specifies probabilities for which state the next interval
starts in, conditional on the durations of those intervals. This
process uses all the information in the record about correlations
between intervals.

D. Colquhoun, C. J. Hatton and A. G. Hawkes700 J Physiol 547.3
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Calculation of the likelihood in practice
The exact solution for eGAF(t) (Hawkes et al. 1990), has the form of
a piecewise solution; one result is valid between tres and 2tres,
another between 2tresand 3tres, and so on. Furthermore it is not, as
in the ideal case, a sum of kA exponentials (with time constants that
are the reciprocals of the eigenvalues of _QAA), but involves all of
the k _ 1 eigenvalues of Q (where k is the total number of states,
kA + kF), multiplied by polynomial functions of time, of higher
degree in each time interval. For long intervals this expression
becomes quite complicated (and eventually gets unstable), but
luckily we are rescued from this complication by Hawkes and
Jalali’s beautiful asymptotic form (Hawkes et al. 1992), which is
essentially exact above 2tres or 3tres. The beauty of this solution lies
in the fact that (a) it can be written in the usual form, as a mixture
of simple exponentials, and (b) it has the ‘right number’ of
exponentials, kA, exactly the same as when events are not missed,
though the time constants, and areas, of the kA exponentials are, of
course, not the same as for the ideal (tres = 0) open time pdf – they
have to be found numerically.

The program, HJCFIT, uses the exact solution for the first two
dead times, i.e. for intervals of duration between tres and 2tres, and
for intervals between 2tres and 3tres. For longer intervals, the
asymptotic form is used. It is easily verified that this procedure is,
for all practical purposes, exact, because the program allows both
exact and asymptotic solutions to be plotted as superimposed
graphs (e.g. Fig. 6B) and in all cases these curves became
indistinguishable for durations well below 3tres.

Dealing with an unknown number of channels: choosing
appropriate start and end vectors
The program uses a modified simplex algorithm to maximise the
likelihood of the observed sequence of open and shut times.

Although the simulated experiments all contained one channel,
the number of channels in the membrane patch is not known in
real experiments. Therefore most of the simulations shown here
were analysed, as were the real experiments, by methods that do
not assume a number of channels. This is done by dividing the
record into stretches (groups of openings) that are short enough
that we can be almost sure that each group originates from only
one channel. At low acetylcholine concentrations the groups are
short – they consist of individual ‘activations’ of the channel
(bursts) which are made up of one or more apparent openings.
For the muscle type nicotinic receptor there would rarely be more
than 14 openings per activation (mean about 4.7; Hatton et al.
2003), though the omission of brief shuttings means that the
apparent number of openings per activation is smaller than the
true number. At high agonist concentrations, long groups
(clusters) of openings occur during which the probability of being
open is high enough that we can be sure that the whole cluster
originates from a single channel (Sakmann et al. 1980). In either
case a suitable critical shut time for definition of bursts can be
decided from the distribution of apparent shut times (see
Colquhoun & Sigworth, 1995).

Since each group of openings is thought to originate from one
channel only, a likelihood can be calculated for that group from:

l = fb
eGAF(to1)

eGFA(ts1)
eGAF(to2)

eGFA(ts2)
eGAF(to3)... eF . (4)

This is the same as eqn (3), apart from the initial and final vectors.
For low concentration records, these initial and final vectors, fb

and eF, were calculated as described by Colquhoun, Hawkes &

Srodzinski (1996; eqns (5.8), (5.11)), and so will be referred to as
CHS vectors. This method is based on the fact that the long shut
times that separate one channel activation from the next are
known to be equal to or longer than the tcrit value that was used to
define the bursts of openings. If there are several channels in the
patch, rather than one, then the two consecutive activations may
arise from different channels and in this case the true shut time
(for one channel) between one activation and the next would be
longer than the observed interval, so in such a case it must be
longer than tcrit. The initial and final vectors are found on the basis
that although we do not know the true (one channel) length of the
shut times between bursts, we do know that they must be greater
than tcrit. Therefore the relevant probabilities are integrated over
all shut times greater than tcrit. This method is appropriate only for
cases in which the shut times between bursts are spent in states
that are represented by the mechanism being fitted. For records at
high concentrations, the shut times between bursts of openings
will be spent largely in desensitised state(s). We preferred to omit
desensitised states from the mechanisms being fitted in most cases,
because there is still uncertainty about how to represent them, and
because it was not our aim to investigate desensitisation. Therefore
for high concentration records the CHS vectors were not used,
and the likelihood for each high concentration group (cluster) of
openings was calculated from eqn (3). Although not exact, this
procedure can be justified by the fact that the bursts observed at
high agonist concentrations usually contain many openings, so
the effect of the initial and final vectors will be quite small. The
simulations described below test these procedures.

In HJCFIT, the likelihoods are calculated, from eqn (3) or eqn (4),
for each of the groups of openings in the record, and the resulting
burst log-likelihoods, L = log(l), are added to get an overall
likelihood for the whole observed record. The simplex algorithm
used by HJCFIT finds the values for the rate constants in the
mechanism (the elements of the Q matrix) that maximise this
likelihood. The sum of all of these individual burst log-likelihoods
gives a proper overall log-likelihood only if the bursts behave
independently of each other. This is likely to be true even if only
one channel is present (Colquhoun & Sakmann, 1985). We shall
continue to refer to the sum as the overall log-likelihood, though
pedantically it should perhaps be called a pseudo-log-likelihood.

Bad intervals
In real records it is not uncommon for bits of the record to have to
be excised, for example because the occasional double opening
occurs, or because the patch temporarily becomes noisy. Such
events are marked as ‘unusable’ while the experiment is being
measured in SCAN (details at end of Methods). When groups of
openings are being constructed, the group must end at the last
good interval that precedes an unusable interval. The conservative
approach would then be to discard that entire group and start
looking for a new group at the next good interval. However, the
criterion for construction of a group is that all openings in a group
come (almost certainly) from one individual channel. There is no
requirement that they correspond to any physiological or
mechanistic phenomenon, as there would be, for example, when
constructing burst lengths that are intended to represent
individual channel activations. Therefore in most cases it will be
appropriate to choose the option in HJCFIT to treat bad intervals
as a valid end-of-group. This procedure is followed even if the
analysis specified that all data were from one channel so analysis in
bursts would not be required normally. Simulated data, as used
here except for Figs 12 and 13, contains no unusable intervals.

Maximum likelihood estimation of rate constantsJ Physiol 547.3 701
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Constraints between rate constants and use of the EC50

If the mechanism contains cycles then one of the rate constants in
the cycle may be fixed by the constraint of microscopic
reversibility (see, for example, Colquhoun & Hawkes, 1982) from
the values of all of the others, thus reducing the number of free
parameters by one. This was done in all the fits described here,
though HJCFIT also allows irreversible mechanisms to be
specified; the calculations assume a steady state, but not
necessarily equilibrium.

In almost all the cases discussed here, the record is fitted in bursts,
to circumvent the lack of knowledge of the number of channels in
the patch, as we are forced to do when analysing real records. This
means that, for low concentration records, we have no knowledge
of how frequently the channel is activated, so at least one rate
constant cannot be determined (at least if only a single
concentration record is fitted). One way round this is to fix one
rate constant at a plausible value. The effect of fixing one of the
association rate constants, at either its correct value (that used to
simulate the data) or at an incorrect value, is investigated below.

A better method in principle is to use information from another
source. One option is to specify, from other experiments, the
concentration of agonist that results, at equilibrium, in the
probability of a channel being open (Popen) that is 50 % of
the maximum possible Popen, i.e. the EC50. In HJCFIT there is an
option to supply a value for the equilibrium EC50, which, in
conjunction with values of all the other rate constants, can be used
to calculate the value of any specified rate constant at each stage
during the fitting. This reduces the number of free parameters by
one, though of course good estimates will be obtained only insofar
as an accurate EC50 can be specified.

In HJCFIT, the number of free parameters can be reduced by
constraining any rate constant to be a fixed multiple of another.
This is, of course, not desirable if the true rates do not obey the
constraint. The effects of incorrectly applying such constraints is
investigated below (see Fig. 14).

Other sorts of constraint can be applied. For example an upper
limit can be set for the value of any association rate constant, to
prevent physically unrealistic values being found. This is achieved
simply by resetting the rate constant in question to its upper limit
before evaluating the likelihood. Likewise if a value of a rate
constant should go negative during the fitting process, it can be
reset to a value near zero. It is a virtue of search methods like
simplex, that any arbitrary constraint of this sort is easily
incorporated.

A more effective way of preventing a rate constant from going
negative is to do the fitting process with the logarithm of the rate
constant (e.g. Ball & Sansom, 1989). This is now the default
method in HJCFIT, because it not only prevents negative rates
being fitted, but is also three or four times faster, presumably
because the likelihood surface has a shape such that fewer changes
of the search direction are needed (in simplex, a change of
direction needs two function evaluations for each fitted
parameter).

When a wide range of parameter values is explored, it is possible to
get into regions where the likelihood cannot be calculated, and in
such cases it is important that the program should not crash, but
carry on looking for better parameter values. The main strategy
for achieving this in HJCFIT is to keep a record during the fitting
process of the best (highest likelihood) set of parameters so far. If

values are explored subsequently for which the likelihood cannot
be calculated (e.g. a matrix becomes singular, or asymptotic roots
cannot be found), then the parameters are replaced by the
previous best values, to which a random perturbation (within a
specified range) is applied, to prevent looping. Out of nearly
50 000 fits done for this work, only two crashes resulted from
numerical problems during fitting.

Errors
After the fit is completed, internal estimates of errors are
calculated by obtaining a numerical estimate of the ‘observed
information matrix’, the Hessian matrix, H, with elements
defined as:

(5)

where L = log(l) denotes the log(likelihood), u is the vector of free
parameters, denoted û at the point where the likelihood is
maximised and ui is the ith free parameter.

This is inverted to obtain the covariance matrix, C (with elements
denoted cij), as:

C = H_1. (6)

The square roots of the diagonal elements of the covariance matrix
provide approximate standard deviations for each parameter
estimate. The off diagonals are used to calculate the correlation
matrix, which is printed by HJCFIT, as:

cijri j = ————. (7)«(ciicj j)

To avoid rounding errors, before calculation of the numerical
estimates of the second derivatives, it was first found what
increment in each parameter was needed to decrease the
log(likelihood) by a specified amount (by default, 0.1 log units).
In cases where the fit is very insensitive to a parameter it may be
impossible to find a suitable increment, and in this case the
corresponding row and column of H for that parameter are simply
omitted from eqns (5) and (6) (this procedure is justifiable only
insofar as the row and column that are omitted consist of elements
that are all close to zero). In other words parameters that have little
effect on the likelihood are treated, for the purposes of error
estimation, as constants.

Estimatability
A vital problem for the analysis of experiments is to know how
many free parameters (in this case, rate constants) can be
estimated from experimental data. It was shown by Fredkin & Rice
(1986) and Bauer et al. (1987) that a single record can provide
estimates of up to 2 kAkF rate constants. For scheme 1 (Fig. 1),
kA = 3 and kF = 4 so up to 24 rate constants could be estimated in
principle (compared with 14 in scheme 1). However the
simulations done here show that under our conditions (resolution
25 ms and unknown number of channels in the patch), the
practical limit is more like 8–10. Indeterminacy of parameters
should be shown by lack of reproducibility in replicate
experiments (as long as the fit is not simply leaving initial guesses
little changed). An indication of indeterminacy should also be
apparent in a single fit when the calculations in eqns (5), (6), (7)
indicate large (or indeterminate) errors and/or high correlations.
However the number of replicates will always be limited (especially

D. Colquhoun, C. J. Hatton and A. G. Hawkes702 J Physiol 547.3
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if several runs are fitted simultaneously), and simulations provide
a valuable way of investigating determinacy in more detail, under
realistic conditions.

Plotting of histograms
For the display of open times etc., the histograms show the
distribution of log(time), with the frequency density plotted on a
square root scale, as is conventional for experimental results
(Sigworth & Sine, 1987). The histograms of estimates of rate
constants are shown without any transformation, to make clear
the real form of the distribution.

Checking the quality of the fit
The whole fitting process is done on the basis of the list of open
and shut times produced by idealisation of the data; nothing need
be plotted. After the fit it is, of course, very important to see that
the results do in fact describe the observations. The quality of the
fit is best judged by looking at the data with the fits superimposed.
Although the whole record is fitted at once, in order to display the
fit it is still necessary to show separate histograms. In HJCFIT, the
following plots can be drawn at the end of the fit (examples are
shown in Figs 6, 14, 16 and 18).

(1) Histogram of apparent open times, with the HJC open time
pdf that is predicted by the fitted parameters with the resolution
that was used for the analysis (e.g. Fig. 6A). If all is well, the HJC
distribution should be a good fit to the observations in the
histogram, even though the curve was not fitted to the histogram
data. In addition the estimated ‘true’ distribution is shown as a
dashed line, i.e. the distribution of open times with perfect
resolution that is predicted by the fitted parameters, as calculated
from the much simpler results of Colquhoun & Hawkes (1982).

(2) Histogram of apparent shut times, with fits superimposed as
for open times (e.g. Fig. 6B). For apparent open and shut times,
the asymptotic distribution, which is a mixture of kA or kF

exponentials respectively, can also be plotted (with components if
required) as a check that it becomes essentially identical with the
exact distribution above 3tres (e.g. Fig. 6B).

(3) The conditional pdf of apparent open times can be plotted to
test whether correlations between open and shut times are
described adequately by the mechanism and its fitted rate
constants. The histogram includes only those openings that are
preceded (or followed, or both) by shuttings with lengths in a
specified range. On the data is superimposed the appropriate
conditional HJC distribution that is calculated from the fitted rate
constants and resolution (calculated as described in Colquhoun et
al. 1996). In addition the distribution of all apparent open times
can be shown for comparison (as a dashed line). An example is
shown in Fig. 6C. This display may be repeated for different shut
time ranges.

(4) The mean apparent open times for openings that are preceded
(or followed) by shuttings with lengths in a specified series of
ranges (e.g. 0.05–0.1 ms, 0.1–0.15 ms, 0.15–1 ms, 1–10 ms and
10–100 ms). The experimentally observed values are shown,
together with the values that are calculated from the fit by HJC
methods (see Colquhoun et al. 1996). This provides another test of
how well the fit describes the observations. An example is shown in
Fig. 6D, which also shows the theoretical continuous relationship
between mean open time and adjacent shut time as a dashed line,
though this cannot be compared directly with the data because of
the need to bin data for display (Colquhoun et al. 1996).

(5) The three-dimensional distributions. The bivariate HJC
distribution of apparent open time and adjacent apparent shut
time, f(to,ts), (or of open times separated by specified lag) can be
plotted. It is hard to make much of this visually, so Magleby &
Song (1992) suggested that the useful information in it could be
more helpfully plotted as a ‘dependency plot’ (see also Colquhoun
& Hawkes, 1995b, for a brief account).

Dependency is defined as:

f (to, ts)d(to, ts) = ———— _ 1, (8)
fo(to)fs(ts)

where f (to,ts) is the bivariate HJC pdf, as above, and fo(to) and fs(ts)
are the normal unconditional HJC distributions of apparent open
time and shut time, respectively. The dependency will therefore be
zero if open and shut times are independent, above zero if there is
an excess of open times at any specified shut time, and below zero
if there is a deficiency. The observed dependency plot can be
displayed as a three-dimensional graph (though a large number of
observations is needed to get a smooth one), and the dependency
predicted by the fit (calculated by HJC methods) can be similarly
displayed, though there is no way to superimpose the fit on the
data. Examples are shown in Fig. 6E and F.

Simulations
Experimental results are simulated by use of the high quality pseudo-
random number generator of Wichmann & Hill (1985). This
generates a uniformly-distributed number, u, between 0 and 1,
which was used to generate an exponentially distributed interval, the
duration of the sojourn in the current state, state i say. The mean
time spent in the ith state is ti = _1/qii and the corresponding
random duration is _ti ln(u). If the current (ith) state is connected
to more than one other state then another random number is
generated to decide, with the appropriate probability, which state is
visited next. Adjacent intervals of equal conductance are then
concatenated to generate a simulated open or shut time.

In each simulated experiment, 20 000 intervals were generated
(this may need something of the order of 0.5 million individual
state transitions, because many transitions are between states of
equal conductance). Next a fixed resolution was imposed on these
20 000 intervals. With a resolution of 25 ms (as used in most
experiments, Hatton et al. 2003), slightly over half of the 20 000
intervals were eliminated as being undetected (shorter than
25 ms), leaving about 9000–10 000 resolved intervals that were
used as the input for fitting.

On a 1.5 GHz PC, each fit took from about 40–60 s (for about
9500 transitions at a single concentration with 9 free parameters),
to 4 or 5 min (for two concentrations with 13 free parameters, or
12 plus an EC50 constraint).

The program that is used, HJCFIT, is available at http://
www.ucl.ac.uk/Pharmacology/dc.html, together with program,
SCAN, that is used for the fitting of durations and amplitudes that
form the input to HJCFIT. The programs SIMAN (to inspect
results of repeated simulations), SCBST and SCALCS (to calculate
ideal burst properties and macroscopic currents, respectively) are
also available there. The current version of HJCFIT, as well as
allowing the input of experiments analysed with SCAN, also
allows simulated experimental results to be generated internally,
and fitted. This can be repeated any specified number of times. In
this paper, 1000 sets of simulated data were generated and each set
fitted to generate 1000 estimates of each rate constant.

Maximum likelihood estimation of rate constantsJ Physiol 547.3 703



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

RESULTS
The mechanism
The HJCFIT program allows essentially any sort of

reaction mechanism to be specified, but the immediate

aim of this paper was to investigate the properties of

estimates from experiments on nicotinic acetylcholine

(ACh) receptors (Hatton et al. 2003), so all simulations

were done using the mechanisms shown in Fig. 1.

Scheme 1 is a mechanism that has been used in several

studies of the ACh receptor (e.g. Colquhoun & Sakmann,

1985; Milone et al. 1997). It represents a molecule with two

ACh binding sites that are different from each other,

denoted in Fig. 1 as the a and b sites. Occupation of either

site alone can produce mono-liganded openings, although

these are rare and brief (e.g. Colquhoun & Sakmann, 1981;

Jackson, 1988; Parzefall et al. 1998). The notation for the

rate constants is such that the subscripts a and b denote

which of the two sites is involved, and the subscripts 1 and

2 indicate whether the binding is the first (other site

vacant) or second (other site occupied). Thus, for

example, k+2a denotes the association rate constant for

binding to the a site when the b site is already occupied.

This is, of course, not the only mechanism that can be

envisaged, but it is the mechanism that is most appropriate

in the light of what is known about the structure of the

receptor, and it can describe with quite good accuracy all

the observations.

In general any such mechanism must allow for the

possibility that the channel may open spontaneously when

no ligand is bound. Such openings are thermodynamically

inevitable, and have been reported for the embryonic form

of the nicotinic receptor (mouse muscle cells in culture,

Jackson, 1984), and occur with some mutant receptors

(Grosman & Auerbach, 2000). However spontaneous

openings seem to be either too infrequent (or too short) to

be detected in the adult muscle receptor, and we have not

been able to detect them. Since the purpose of scheme 1 is

to fit data, we cannot include states that are not detectable

in our observations.

Scheme 2 (Fig. 1B) is the same mechanism as scheme 1, but

with a single desensitised state added. This mechanism was

used to simulate experiments with high concentrations of

agonist, when the records contain long desensitised periods.

This mechanism is too simple to describe accurately the

desensitisation process; that requires a cyclic mechanism

(Katz & Thesleff, 1957) and many more desensitised states

(Elenes & Auerbach, 2002). However it is not our

intention to investigate desensitisation here, and in all

cases scheme 1 was fitted to the simulated experiment. For

higher agonist concentrations, scheme 2 was used to

simulate the observations, but the results were then fitted

in bursts (see Methods) with scheme 1. When scheme 2

was used to simulate observations, we took the rate

constant for entry into the desensitised state bD = 5 s_1,

and for exit from the desensitised state aD = 1.4 s_1.

These values gave rise to desensitised periods (spent

in state A2D) in the simulated record of mean length

1/aD = 714 ms, roughly as observed. At 10 mM ACh,

inspection of the shut time distribution showed that using

tcrit = 5 ms, to define bursts when fitting scheme 1,

eliminated essentially all of the desensitised intervals,

while including most of the others. Scheme 2 can also be

used, with a much shorter-lived ‘desensitised’ state (1/aD

about 1 ms) to describe the ‘extra shut state’ invoked by

Salamone et al. (1999), as in Hatton et al. (2003).

Fitting records at a single concentration with
constraints
Constraints. Scheme 1 (Fig. 1) has 14 rate constants, but

one of them (k+1a) was always determined by microscopic

reversibility so there are 13 free parameters to be fitted.

This can be reduced to 10 free parameters if it is assumed

that the binding to site a is the same whether or not site b is

occupied, and vice versa. This assumption implies that the

two different binding sites behave independently of each

other while the channel is shut. This is plausible, given the

distance between the sites, but it is not inevitable.

Nevertheless this assumption of independence has been

D. Colquhoun, C. J. Hatton and A. G. Hawkes704 J Physiol 547.3

Figure 1. The two reaction schemes that were used for
simulation of experiments
A = agonist, R = shut channel, R* = open channel. Ra = the a
binding site, Rb = the b binding site. D = desensitized channel.
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made in earlier studies. It implies imposition of the

following three constraints:

k_2a = k_1a , k_2b = k_1b, k+2b = k+1b. (9)

These, together with the microscopic reversibility

constraint, assure also that:

k+2a = k+1a. (10)

When a single low-concentration record is fitted in bursts

(see Methods), there is no information available about

how frequently the channel is activated, so whether or not

the above constraints are applied, it is necessary to supply

more information in order to get a fit. This was done in two

ways. Either (a) one of the rate constants (k+2a) was fixed at

an arbitrary value such as 108
M

_1 s_1 (the effects of error in

this value are investigated below), or (b) an EC50 value was

specified, and used to calculate one of the rate constants

(see Methods). In either case the number of free

parameters is reduced to nine.

Initial guesses based on the two binding sites being
similar. As with any iterative fitting method, initial guesses

for the free parameters have to be supplied. It is always

important to check that the same estimates are obtained

with different initial guesses. It is quite possible, if the fit is

very insensitive to the value of one of the rate constants, for

convergence to be obtained with the initial guess being

hardly changed. This does not mean that it was a good

guess, but merely that the data contain next to no

information about that particular rate constant; it is easy

to get spurious corroboration of one’s prejudices. And in a

complex problem like this it is quite possible that the

likelihood surface will have more than one maximum; a

bad guess may lead you to the wrong maximum. This

problem can be illustrated by what happens when attempts

are made to start the fit of scheme 1 with guesses that make

the two binding sites almost the same, when in fact they are

different. In general it seems like quite a good idea to start

from a ‘neutral’ guess like this, but in practice it can give

problems. (Note, too, that all the calculations assume that

eigenvalues are distinct, so it is inadvisable to start with

guesses that are identical.)

Figure 2 shows the distributions of 1000 estimates

obtained from fitting a single record at a low ACh

concentration, 30 nM, with the constraints in eqns (9) and

Maximum likelihood estimation of rate constantsJ Physiol 547.3 705
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(10), and with k+1a = k+2a fixed at 1 w 108
M

_1 s_1 (half its

true value in this case). The resolution imposed before

fitting was 25 ms, as in most experiments. The fitting was

done in bursts of openings that corresponded to individual

activations of the channel, defined by tcrit = 3.5 ms, and the

likelihood calculation for each burst was started and ended

with CHS vectors (see Methods). In this case the rate

constants, rather than their logarithms, were the free

parameters. The true rate constants (those used for the

simulation) are shown in Table 1, and the initial guesses

for the fitting are shown as ‘guess 1’ in column 3 of Table 1.

On each histogram of the 1000 estimates, the true value is

marked with an arrow. The distribution of the estimates of

a2, the shutting rate for diliganded channels, in Fig. 2A has

two peaks. One, shown enlarged in the inset, is close to the

true value of a2 = 2000 s_1. This peak contains 73 % of all

estimates and these have a mean of 2045 ± 174 s_1

(coefficient of variation 8.5 %), so these estimates have a

slight positive bias but are quite good. The other 27 % of

estimates of a2 are much bigger, nowhere near the true

value. A similar picture is seen with the estimates of b2

shown in Fig. 2B. Again 73 % of estimates (the same 73 %)

are near the right value, b2 = 52 000 s_1, and the other 27 %

are much too big. The main peak has a mean of

52 736 ± 3692 s_1, the coefficient of variation being 7.0 %,

slightly lower than for a2.

D. Colquhoun, C. J. Hatton and A. G. Hawkes706 J Physiol 547.3

Figure 2. Distributions of the 1000 estimates of rate constants found by fitting, with HJCFIT,
to 1000 simulated experiments
The arrows mark the true value of the rate constants. The simulation used the true rate constants given in
Table 1 (‘true 1’), and each fit started from ‘guess 1’ (Table 1). Each ‘experiment’ consisted of 20 000
transitions (about 9000 transitions after the resolution of 25 ms was imposed), at a single low concentration,
30 nM, of ACh. The fitting was done in bursts of openings defined by a tcrit = 3.5 ms, with CHS vectors (see
Methods). The sites were assumed to be independent (eqn (9)), and k+1a = k+2a was fixed at 1 w 108

M
_1 s_1

(half its true value in this case). A, distribution of 1000 estimates of a2. The inset shows the region near
2000 s_1 enlarged. B, estimates of the 1000 estimates of b2 from the same fits as used for A. C, the maximum
likelihood (Lmax) attained in each of the 1000 fits plotted against the value of a2 from that fit D, the value of a2

from each of the 1000 fits plotted against the value of b2 from the same fit. The pale circle marks the true
values.
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Figure 2C shows that there is essentially no difference

between the ‘goodness of fit’, as measured by the

maximum value of the log-likelihood attained in the

‘experiments’ that gave good estimates, and those that gave

estimates that were much too fast. All of the fits fall clearly

into either the ‘right solution’ or into the ‘fast solution’

peaks, apart from 10 or so (1 %) that are smeared in

between the two main peaks. This behaviour resembles the

very simplest version of the missed event problem, which

is known to have two solutions (see Discussion).

When the estimate of a2 is plotted against the value of b2

from the same fit, in Fig. 2D, it is clear that the two values

are very strongly correlated – the fits that give good

estimates of a2 also give good estimates of b2, and vice

versa. This phenomenon will be discussed below.

Initial guesses based on the two binding sites being
different. When similar experiments are simulated, but

with initial guesses for the fit that start from the

supposition that the two binding sites are not similar, these

better guesses very rarely lead to the incorrect ‘fast

solution’. The guesses used for each of the 1000 fits are

shown in column 4 of Table 1 (‘guess 2’). The results are

shown in Figs 3–5.

In this case none of the 1000 fits converged on the

incorrect ‘fast solution’. The mean of 1000 estimates of a2

was 2016.5 ± 146.4 s_1, compared with a true value of

2000 s_1 (Fig. 3A). The coefficient of variation (CV) of the

estimates is 7.3 % and there is a very slight positive bias of

+0.82 % (calculated as a fraction of the true value). For b2

the mean was 52 285 ± 3248 s_1, compared with a true

Maximum likelihood estimation of rate constantsJ Physiol 547.3 707

Figure 3. Distribution of estimates of rate constants, and of quantities derived from them,
for 1000 fits to experiments simulated as in Table 1 (starting from ‘guess 2’) 
The arrows mark the true values of the rate constants. Each ‘experiment’ consisted of about 9000 transitions
at a single low concentration, 30 nM, of ACh. The constraints in eqns (9) and (10) were true for the
mechanism used for simulation, and were applied during the fit. In these fits k+1a = k+2a was fixed arbitrarily at
1 w 108

M
_1s_1, half its true value. Distribution of 1000 estimates of A, a2; B, b2; C, E2 = b2/a2; D, k_2a + k_2b.

The graph in E shows the 1000 pairs of a2 and b2 values plotted against each other to show the positive
correlation between them (r = +0.916, see Table 3).
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value of 52 000 s_1 (Fig. 3B). The CV was 6.2 %, and bias

+0.55 %. Again the estimates of a2 and b2 show a positive

correlation (Fig. 3E), though over the narrower range of

values found here it is much more nearly linear than seen

in Fig. 2D. The ratio of these two quantities, E2 = b2/a2,

represents the efficacy for diliganded openings (Colquhoun,

1998). Because of the strong positive correlation betweena2 and b2, this ratio is better defined than either rate

constant separately. The 1000 estimates of E2 shown in Fig.

3C have mean of 25.96 ± 32 (true value 26), so their CV is

2.9 % with an insignificant bias of _0.16 %. The total

dissociation rate of agonist from diliganded receptors,

k_2a + k_2b, was also well-defined. The distribution of 1000

estimates shown in Fig. 3D has a mean of 11 463 ± 573 s_1,

compared with a true value of 11 500 s_1. The CV was

5.0 %, and bias _0.32 %. This is somewhat more precise

that the two separate values, k_2a = k_1a (CV = 12 %,

bias = 1.8 %) and k_2b = k_1b (CV = 6.0 %, bias = 0.1 %)

(see Fig. 4F,H). In this example the negative correlation

between these two values was modest (r = _0.274) so their

sum is more precise than their separate values to a

correspondingly modest extent.

The parameters for singly liganded receptors are generally

less precisely estimated than those for diliganded

receptors, especially when unconstrained (see below), but

D. Colquhoun, C. J. Hatton and A. G. Hawkes708 J Physiol 547.3

Figure 4. Distributions of the ‘one site’ rate constants for the same set of 1000 fits as in Fig. 3
The arrows mark the true values of the rate constants.
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quite reasonable estimates can be found if the constraints

in eqns (9) and (10) are true, as in the present case. Figure 4

shows the distributions of the estimates of the other free

parameters for the same simulations as those shown in

Fig. 3. These are the singly liganded opening and shutting

rates, a1a, b1a, a1b and b1b, and the binding rate constants,

k_1a, k_1b and k+1b. In these fits k+1a = k+2a was fixed

arbitrarily at 1 w 108
M

_1s_1, half its true value. It can be

seen that the estimates of all of these parameters are

tolerably good, apart from b1b, which is, on average about

half of its true value. This happens because k+1a = k+2a was

fixed at half of its true value; if we fix k+2a at its true value,

2 w 108
M

_1s_1, then good estimates of b1b are found too. It

is natural to ask, why it is primarily the estimate of b1b that

is affected by an error in the fixed value of k+1a = k+2a?

There is a good intuitive reason for this happening.

Inspection of the expressions for the equilibrium

occupancies for scheme 1 (Fig. 1) shows that the relative

frequencies of the two sorts of singly-liganded openings is

given by:

b1ak+2ak_2b
f1 = —————. (11)b1bk+2bk_2a

Furthermore, the frequency of openings with both sites

occupied, relative to the frequency with only the a site

occupied is given by:

b2k+1bc
f2a = ————, (12)b1ak_1b

where c is the agonist concentration, and the corresponding

relative frequency when only the b site is occupied is given

by:

b2k+1ac
f2b = ————. (13)b1bk_1a

Maximum likelihood estimation of rate constantsJ Physiol 547.3 709

Figure 5. Distributions of equilibrium constants for the same fits as in Figs 3 and 4 
A–D, distributions of the four equilibrium constants (E1a, E1b, Ka, Kb) that refer to the two separate sites,
calculated from the fitted rate constants (as shown Figs 3 and 4). The arrows mark the true values of the rate
constants. E, the negative correlation between k_2a(= k_1a) and b1b; F, the positive correlation between k+1b (=
k+2b) and b1a.
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Figure 6. Tests of the quality of the fit produced in a single simulated experiment of the same
sort as the 1000 simulations used to generate Figs 3–5
A, histogram of distribution of apparent (‘observed’) open times with a resolution of 25 ms. The solid blue
line shows the HJC open time distribution predicted by the fitted values of the rate constants with a
resolution of 25 ms. Dashed red line: the open time distribution predicted by the fitted values of the rate
constants without allowance for limited resolution – the estimate of the true open time distribution. B, as in A
but for apparent shut times (note that only shut times up to tcrit = 3.5 ms are used for fitting so only these
appear in the histogram). The HJC distribution is, as always, calculated from the exact expressions up to 3tres

(i.e. up to 75 ms in this case), and thereafter from the asymptotic form. Green line: the asymptotic form
plotted right down to tres = 25 ms. It is seen to become completely indistinguishable from the exact form for
intervals above about 40 ms. C, histogram of distribution of ‘observed’ open times with a resolution of 25 ms
for openings that are adjacent to short shuttings (durations between 25 and 100 ms). Solid line: the
corresponding HJC conditional open time distribution predicted by the fitted values of the rate constants
with a resolution of 25 ms. Dashed line: the HJC distribution of all open times (same as the solid line in A). D,
conditional mean open time plot. The solid diamonds show the observed mean open time for apparent
openings (resolution 25 ms) that are adjacent to apparent shut times in each of seven shut time ranges
(plotted against the mean of these shut times). The bars show the standard deviations for each mean. The
shut time ranges used were (ms) 0.025–0.05, 0.05–0.1, 0.1–0.2, 0.2–2, 2–20, 20–200 and > 200. Note,
however, that shut time greater than tcrit (3.5 ms) will be shorter than predicted if there was more than one
channel in the patch so the values on the abscissa above 3.5 ms are unreliable. The solid circles show the
corresponding HJC conditional mean open times predicted by the fitted values of the rate constants with a
resolution of 25 ms, for each of the seven ranges. The dashed line shows the continuous HJC relationship
between apparent mean open times conditional on being adjacent to the shut time specified on the abscissa.
E, ‘observed’ dependency plot for apparent open times and adjacent shut times (resolution 25 ms). Regions of
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The fit is sensitive to the values of these ratios of opening

frequencies (in this particular case the open states are not

connected to each other, so they are simply the ratios of the

areas of the three components of the open time

distribution). All three ratios will be unaffected by a

decrease in the value of k+1a = k+2a, if, at the same time, b1b

is reduced by the same factor. Attempting to compensate

for a reduction in k+1a = k+2a in other ways does not work.

For example a concomitant increase in b1a in eqn (11) can

keep f1 unchanged, but will result in changes in eqns (12)

and (13). It is only by decreasing b1b that the predicted

relative frequencies of the three sorts of openings will be

unchanged.

Figure 5A–D shows the distributions of the equilibrium

constants, calculated for each of the 1000 fits from the rate

constants shown in Figs 3 and 4. Figure 5A and B shows

the two ‘efficacies’ for singly liganded openings, E1a

( = b1a/a1a) for when only the a site is occupied, and E1b

( = b1b/a1b) for when only the b site is occupied. The

estimates are tolerable apart from the bias caused by

specification of an incorrect value for k+1a = k+2a. The

equilibrium constants for binding to a and b sites, Ka and

Kb, are shown in Fig. 5 C and D (the notation Ka can be

used because the constraints imply that K1a = K2a and

similarly for the b site). Apart from the bias caused by

specification of an incorrect value for k+1a = k+2a, the

estimates are not too bad (CV = 11.6 % for Ka but larger

(CV = 17.5 %) for Kb. The plot in Fig. 5E shows that there

is quite a strong negative correlation (r = _0.74) between

the estimates of k_1a = k_2a and of b1b. Figure 5F shows a

stronger positive correlation (r = +0.92) between the

estimates of k+1b = k+2b and of b1a. Correlations of this

magnitude are a sign of ambiguity in the separate values of

the parameters concerned.

The quality of the fit obtained in a single simulated
experiment. Figures 3–5 showed the distributions of 1000

estimates of rate constants. In practice, experiments are

analysed one at a time, and after the estimates of the rate

constants have been obtained, the extent to which they

describe the observations is checked. Figure 6 shows

examples of these checks in the case of a single experiment

that was simulated under exactly the same conditions as

were used to generate Figs 3–5. More details of these plots

are given in Methods (see Checking the quality of the fit).

Notice that the fit looks excellent despite the 2-fold error in

the (fixed) value of k+1a = k+2a, and the consequent error inb1b. Figure 6A–C shows the data as histograms, for (A) all

open times, (B) all shut times and (C) open times that are

adjacent to short (up to 100 ms) shut times. On each of these

histograms, the solid line that is superimposed on (not fitted

to) the data is the appropriate HJC distribution calculated

from scheme 1 using the values of the rate constants that

were obtained for the fit and the imposed time resolution of

25 ms. The fitting was done as described for Figs 3–5. The

HJC distributions (solid blue lines in Fig. 6A–C), were, as

always, calculated from the exact expressions up to 3tres

(i.e. up to 75 ms in this case), and thereafter from the

asymptotic form. The green line in Fig. 6B shows the

asymptotic form plotted right down to tres = 25 ms. It is seen

to become completely indistinguishable from the exact value

for intervals above about 40 ms, thus justifying the claim that

the calculations are essentially exact. For the apparent open

times in Fig. 6, the exact and asymptotic were hardly

distinguishable right down to 25 ms (see Hawkes et al. 1992,

for more details).

In Fig. 6A and B, the red dashed line shows the estimate of

the ideal distribution (no missed events) calculated from

the fitted rate constants (see Methods for details). It is clear

from Fig. 6A that the apparent open times are greatly

extended by the failure to detect many brief shuttings.

The conditional distribution in Fig. 6C shows that short

openings very rarely occur adjacent to short shuttings (the

dashed line shows the HJC distribution of all open times

longer than 25 ms: see Methods).

Figure 6D shows a conditional mean open time plot. The

diamond symbols show the data. Each represents the mean

apparent open time for openings that are adjacent to shut

times within a specified range. Seven shut time ranges were

specified (see legend) and the means of the open times

(blue diamonds) are plotted with their standard deviations

(bars). The HJC predictions (calculated from the fitted

rate constants and a resolution of 25 ms, as in Colquhoun

et al. 1996) are shown, for the same ranges, as red circles.

The dashed red line shows the theoretical continuous

relationship between mean open time and apparent shut

times, but this cannot be used directly as a test of fit,

because shut time ranges must be used that are wide

enough to encompass a sufficient number of observations.

Figure 6E and F shows the observed and the predicted

dependency plot, respectively, for the same ‘experiment’

(see Methods). The dependency plot calculated from the

fitted rate constants by the HJC method (Fig. 6F) shows

that the shortest apparent shut times are much more likely

to occur adjacent to long apparent openings than next to

short openings, and that long apparent shut times are

predicted to be rather more common adjacent to short

shut times. The ‘observations’ (Fig. 6E) are qualitatively

similar, but exact comparison is difficult with 3D plots,

Maximum likelihood estimation of rate constantsJ Physiol 547.3 711

positive correlation (dependency greater than zero) are red, negative correlations are blue, and black areas
indicate regions where there were not enough observations to plot. F, fitted HJC dependency plot, predicted
by the fitted values of the rate constants with a resolution of 25 ms.
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and a large number of observations is needed to get a

smooth 3D plot.

The quality of internal estimates of variance and
correlation. In the last fit of the set of 1000 shown in Figs 3

–5, the Hessian matrix was calculated as described in

Methods. The approximate standard deviations for the

parameter estimates, and the correlations between pairs of

estimates, were compared with the values measured

directly from the 1000 fits. The values are shown in

Tables 2 and 3.

There is good general agreement between the errors and

correlations that are predicted in this particular

‘experiment’ and the values actually found by repetition of

the experiment 1000 times. The calculation of errors via

the Hessian matrix thus produces, at least in this case, a

good prediction of what the real errors and correlations

will be. Of course, in real life it is not so easy to repeat an

experiment under exactly the same conditions. When

experiments are repeated at different times, and with

different batches of cells, we (Gibb et al. 1990; Hatton et al.
2003) and others (e.g. Milone et al. 1997; Bouzat et al.
2000) have often found quantitative differences between

repeated experiments that are beyond what would be

expected from experimental error.

Use of an EC50 value as a constraint. The fixing of a rate

constant at an arbitrary value (as in Figs 3–5) is obviously

an unsatisfactory solution to the problem of the patch

containing an unknown number of channels. In real life

we do not know the true value of a rate constant, and there

are two ways to circumvent this problem. One is to fit

simultaneously results at several different concentrations

(see below). Another is to use an independently determined

D. Colquhoun, C. J. Hatton and A. G. Hawkes712 J Physiol 547.3
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EC50 value to constrain the missing rate constant, (see

Methods). The EC50 for the true rates in Table 1 is 3.3 mM.

Rather than fixing k+1a = k+2a at an arbitrary value, its value

is calculated at each iteration from the specified EC50 plus

the values of the other rate constants.

When 1000 fits were done, like those shown in Figs 3–5,

but with k+2a calculated from the (correct) EC50 (3.3 mM),

reasonable estimates were obtained for all nine free rate

constants, including b1b, for which the mean of all 1000

estimates was 158.4 ± 43.6 s_1 (true value 150 s_1). The

results for all the rate constants, with the specified EC50

being the correct value, are shown in Figs 7 and 8.

As always, the rate constants for the diliganded receptor

are better defined than those that refer to the two separate

sites, but even the worst estimates are tolerable. This

applies to the binding equilibrium constants for the two

binding sites too, which are quite scattered. The distribution

of Ka (Fig. 8E) has a CV = 21.8 % and bias = _1.4 %, and

the distribution of Kb (Fig. 8F) has a CV = 17.3 % and

bias = _1.3 %. However these two quantities show a

strong (though not linear) negative correlation (Fig. 8G).

Therefore it is not surprising that their product, KaKb, is

rather more precisely determined, as shown in Fig. 8H,

which has a CV = 6.35 % and bias _1.3 %. It is this product

that occurs in those terms that refer to diliganded receptors

in the expressions for equilibrium state occupancies.

The success of this procedure depends, of course, on

having an accurate value for the EC50, undistorted by

desensitisation (unless desensitisation is part of the

mechanism to be fitted). In general it will be best if the EC50

can be determined from a one-channel Popen curve

determined under conditions similar to those used for the

HJCFIT data. To test the effects of using an incorrect EC50,

the simulations were repeated but using an EC50 that was

half, or double, the correct value.

When an EC50 of 6.6 mM (twice its correct value) was used,

most of the parameters were still estimated quite well. The

exceptions were b1b, and k+1a = k+2a, both of which were

Maximum likelihood estimation of rate constantsJ Physiol 547.3 713

Figure 7. The six gating rate constants
Single low concentration of ACh(30 nM) fitted in bursts (tcrit = 3.5 ms), with the two sites constrained to be
independent. No parameters were fixed but k+1a = k+2a was calculated from the other rates so as to give the
specified (correct) EC50. The arrows mark the true values of the rate constants.
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too small, by factors of 4.0 and 4.3 respectively, as shown in

Fig. 9.

When an EC50 of 1.65 mM (half its correct value) was used,

the errors were worse. The estimates of the ‘diliganded

parameters’, a2, b2 and total dissociation rate, k_2a + k_2b,

were still very good, as were the estimates of a1a and a1b

(data not shown). The distributions of the estimates of the

other parameters were all centred on means that were

more or less incorrect. The largest errors were again in b1b,

and k+1a = k+2a, both of which were too big on average, by

factors of 3.4 and 4.4 respectively. The means for the other

rate constants were too big on average by factors that

varied from 0.95 for k_2b = k_1b, to 1.35 for b1a. Some of the

results are shown in Fig. 10.

Correlations between parameter estimates. The

correlation between estimates of two different parameters

is a purely statistical phenomenon. It has already been

illustrated in Figs 2D, 3E, 4E, 5E, 5F and 8G. If the

D. Colquhoun, C. J. Hatton and A. G. Hawkes714 J Physiol 547.3

Figure 8. The same set of fits, with constrained EC50, as shown in Fig. 7
A–D, distributions of the four binding rate constants , and E,F, two derived equilibrium constants, Ka and Kb.
G, plot of Kb against Ka for each of the 1000 fits; H, distribution of the product KaKb. The arrows mark the true
values of the rate constants.



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

estimates are precise enough the correlations vanish. It is

quite distinct from the correlation between, for example,

adjacent open and shut times (see Fig. 6C–F) which is a

physical property of the mechanism, and gives interesting

information about it (e.g. Fredkin et al. 1985; Colquhoun

& Hawkes, 1987). The statistical correlation between

parameter estimates resembles the negative correlation

seen between repeated estimates of the slope and intercept

of a straight line, or the positive correlation seen between

the EC50 and maximum when fitting a Langmuir binding

curve. It is merely a nuisance that limits the speed and

accuracy of the fitting process. The correlation can be seen, in

the form of a correlation coefficient, from the calculation of

the covariance matrix (see Methods), as illustrated in

Table 3.

Figure 11 shows in graphical form the correlations between

all possible pairs of parameters, for the set of simulated

fits shown in Figs 7 and 8. They are arranged as in the

correlation matrix shown in Table 3.

The effect of the strong correlation between the estimates

of a2 and b2 on the fitting process is illustrated in Fig. 12,

for an experiment on wild type human receptor (30 nM

ACh, see Hatton et al. (2003). In this case the correlation

coefficient between estimates of a2 and b2 was r = 0.915, a

typical value. The likelihood surface is in 10-dimensional

space, and so cannot be represented. Fig. 12A shows a 3D

‘cross section’ of the actual likelihood surface that was

constructed by calculating the likelihood for various

values of a2 and b2, with the seven other free parameters

fixed at their maximum likelihood values.

The correlation appears as a diagonal ridge (coloured

pink). Along this ridge, the values of a2 and b2 change

roughly in parallel (so the efficacy, E2 = b2/a2, does not

change much), and the likelihood increases only slowly

towards its maximum (marked red). Figure 12B shows

a contour representation of the same surface near its

maximum. Dashed lines show the coordinates of the

maximum point, the maximum likelihood estimates beinga2 = 1524 s_1 and b2 = 50 830 s_1. The contours are shown

also for log(likelihood) values of L = Lmax _ 0.5 and

L = Lmax _ 2.0. The tangents to these contours provide 0.5-

and 2.0-unit likelihood intervals for the estimates of a2 andb2 (these correspond roughly to one and two standard

deviations, but being asymmetrical they provide better

error estimates: see Colquhoun & Sigworth, 1995).

The effect of this correlation on the fitting process is

illustrated in Fig. 13.

The vertical axis gives the likelihood that corresponds to

the values of a2 and b2 that are reached at various stages

during the fitting process. The initial guess is marked at the

bottom of the graph, and the likelihood increases during

the course of the fit. At first the increase is rapid but there

is a long final crawl along a diagonal ridge near the

maximum. This involves many changes of direction and

slows the fitting process considerably, not least with the

simplex method employed in HJCFIT. In this case the rate

Maximum likelihood estimation of rate constantsJ Physiol 547.3 715

Figure 9. Single low concentration of ACh (30 nM) fitted as in Figs 7 and 8, apart from
specification of an incorrect value for the EC50, twice its correct value
The arrows mark the true values of the rate constants.
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constants, not their logarithms, were used as the free

parameters. However fitting the logarithms of the rates

(see Methods) speeds up the fit and speed is not a problem

in practice.

The effects of fitting as though the binding sites were
independent when they are not. It is quite possible to

obtain good fits to low-concentration data even if it is

assumed incorrectly that the binding sites are independent.

The rate constants in Table 1 (labelled ‘true 2’) were used

to simulate 1000 experiments. These rates represent sites

that interact (see Hatton et al. 2003). The microscopic

equilibrium constant for binding to the a site when the b
site is vacant, K1a = k_1a/k+1a = 20 mM, but for binding to the

a site when the b site is occupied K2a = k_2a/k+2a = 240 mM,

so binding at the a site has a lower affinity if the b site is

occupied; there is negative cooperativity in the binding of

agonist to the shut channel (see Jackson, 1989 and Hatton

et al. 2003). Likewise for binding to the b site K1b =

k_1b/k+1b = 0.33 mM, but when the a site is occupied

K2b = k_2b/k+2b = 4 mM. Again there is negative cooperativity

in the binding of agonist to the shut channel.

These values were used to simulate the experiments, but

during the fit, the (inappropriate) constraints in eqns (9)

and (10) were applied. The initial guesses shown in Table 1

(‘guess 3’) also obeyed these constraints. A single low

(30 nM) concentration was used and k+1a (assumed,

incorrectly, to be the same as k+2a was constrained to give

the specified EC50 (9.697 mM, its correct value). The results

were fitted in bursts (tcrit = 3.5 ms), with CHS vectors (see

Methods). Although good fits could be obtained to the

distributions of apparent open and shut times, many of the

parameter estimates were quite wrong, as shown in Figs 14

and 15.

Figure 14A and B shows that the estimates of rates

constants in a single fit (actually the last of the 1000 fits)

predict well the distributions of apparent open time, and

apparent shut time. Figure 14C shows that the conditional

open time distribution, for openings that are adjacent to

the shortest shut times (25–100 ms), is also predicted well.

However the fact that something is wrong is shown, in this

case, by the dependence of mean open time on adjacent

shut time (Fig. 14D). Although the prediction of the fit is

D. Colquhoun, C. J. Hatton and A. G. Hawkes716 J Physiol 547.3

Figure 10. Single low concentration of ACh (30 nM) fitted as in Figs 7 and 8, apart from
specification of an incorrect value for the EC50, half its correct value
The arrows mark the true values of the rate constants.
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quite good for the shortest shut times (as shown also in

Fig. 14C), and for the longest shut times, the prediction is

quite bad for shut times between about 0.3 and 30 ms. This

is also visible in the conditional apparent open time

distribution shown in Fig. 14E. This shows the distribution

of apparent open times that are adjacent to shut times in

the range 0.5–10 ms, and the predicted fit is bad.

Examples are shown in Fig. 15 of the distributions of rate

constants obtained in 1000 fits that were done under the

same conditions as the single fit shown in Fig. 14. Despite

the grossly incorrect assumptions (and the somewhat

subtle indication of imperfect fit shown in Fig. 14D and E),

the estimates of the ‘diliganded’ rate constants, a2 and b2

are nevertheless quite good (Fig. 15A and B). The estimates

of the total dissociation rate from diliganded receptors,

k_2a + k_2b, was estimated reasonably well too (Fig. 15C),

though with some bias (true value, 14 000 s_1, mean of

1000 estimates 14 900 s_1 with a CV of 6.3 % and bias

+6.4 %). However, as might be expected, the rate constants

that refer to the two separate sites are not well-estimated,

being anything from poor to execrable. The estimates fora1a and a1b were poor (bias +61 % and +12 % respectively),

but the estimates of b1a (shown in Fig. 15D) and b1b were

worse (bias _63 %, CV 30 % for b1a; bias +135 %, CV

12.1 % for b1b), and the estimates of the association and

dissociation rates were inevitably very poor. For example

the estimates of k_1a (true value 400 s_1) and of k_2a (true

value 2000 s_1) were constrained by the fit to be the same,

and had a mean slightly below either true value, 367 s_1;

this distribution is shown in Fig. 15E and F (on two

Maximum likelihood estimation of rate constantsJ Physiol 547.3 717

Figure 11. Correlation matrix shown graphically for the 1000 fits illustrated in Figs 7 and 8 
Fitted values are plotted for the 45 possible pairs of parameters.
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different scales, to allow display of the arrow that indicates

the true values of k_1a (Fig. 15E) and of k_2a (Fig. 15F).

Simultaneous fits of records at more than one
concentration
It has been shown above, that when the two binding sites

are independent, all of the rate constants can be estimated

quite well from a single low concentration experiment.

Since in such experiments it will usually not be known how

many channels were present in the patch it is necessary to

fit the record in bursts, and this means that information

about the absolute frequency of channel activations is

missing. Nevertheless all of the rate constants can be found

if an EC50 value can be specified, as shown in Figs 7–10.

Another way to obtain information about the absolute

frequency of channel activations is to use high agonist

concentrations (see Methods); indeed this will usually be

the best way to obtain information about the EC50. The

method (Sakmann et al. 1980) works only if the channel

shows the right amount of desensitisation to allow

D. Colquhoun, C. J. Hatton and A. G. Hawkes718 J Physiol 547.3

Figure 12. The shape of the
likelihood surface near its
maximum
A, the surface shows the likelihood
for various values of the shutting
rate a2, and the opening rate b2, for
the doubly occupied receptor. In
order to plot this surface, the seven
other free parameters were fixed at
their maximum likelihood values,
and the likelihood was calculated
for various values of a2 and b2.
B, contour representation of the
surface shown in A, near the
maximum. Dashed lines show the
coordinates of the maximum
point, the maximum likelihood
estimates being a2 = 1524 s_1 andb2 = 50 830 s_1. The contours are
shown also for log(likelihood)
values of L = Lmax _ 0.5 and
L = Lmax _ 2.0.
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definition of clear clusters of openings that all originate

from the same channel. When this is the case, the upper

part of a concentration–Popen curve can be constructed (e.g.

Sine & Steinbach, 1987; Colquhoun & Ogden, 1988). At

high concentrations there will be few singly liganded

openings, so the rate constants for their opening and

shutting cannot be determined if high concentrations only

are used. However simultaneous fit of a low concentration

(fitted in bursts) and a high concentration (fitted on the

assumption that only one channel is active) allows good

estimates to be obtained for all ten free constants, without

the need to specify an EC50. The program HJCFIT is

designed for such simultaneous fitting.

The case where the binding sites are independent
A set of 1000 fits was done in which the likelihood was

maximised simultaneously for two separate simulated

experiments, one at a low concentration, 30 nM, and one at

a high concentration, 10 mM (not far from the EC50). The

high concentration data were simulated using scheme 2

(Fig. 1), with the true rate constants shown in Table 1 and

desensitisation rate constants set to bD = 5 s_1 andaD = 1.4 s_1. This produces a record with long desensitised

periods (mean 1/aD = 714 ms) and clusters of openings

that last 240 ms on average, and contain 400 openings on

average (though there will appear to be fewer after the

resolution of 25 ms has been imposed). This is similar to what

is observed in experimental records, though desensitisation

is more complex than suggested in scheme 2 (Elenes &

Auerbach, 2002). The low concentration was analysed in

bursts (tcrit = 3.5 ms) as above, each burst corresponding

with a single activation, and CHS vectors were used (see

Methods). The high concentration was also analysed in

groups (tcrit = 5 ms, no CHS vectors), but in this case the

groups represented the long ‘desensitisation clusters’.

Both sets of simulated data were fitted with scheme 1

(Fig. 1). This was not the same as the scheme 2 that was

used to simulate the data, but the procedure of analysis in

groups (bursts, clusters) excises the desensitised periods.

Thus this simulation also provides a test of the common

procedure of excising desensitised periods from a high

concentration record and then fitting what remains with a

mechanism that does not include desensitised states.

The results showed that the simultaneous fitting of high

and low concentration records gave good estimates of all

10 free rate constants, without having to resort to fixing

one or to providing an EC50 (distributions not shown). It

also showed that excision of desensitised periods is a

satisfactory procedure. The estimates of the ‘diliganded

rate constants’ were excellent. The coefficient of variation

(CV) for a2, b2, and for the total dissociation rate of agonist

from diliganded receptors, k_2a + k_2b, were all below 5 %

(and for E2 = b2/a2 the CV was 1.7 %), all with bias below

0.8 %. For the ‘monoliganded rate constants’ the CV

varied from 3.3 % for a1a and 3.6 % for k_1b = k_2b, up to

21 % for b1b. After exclusion of 16/1000 ‘experiments’ that

gave outlying estimates of b1b, the estimates for all 10 free

rate constants had CVs between 3.2 % (for b2) and 14.1 %

(for b1b), and bias between about 0.2 % (for b2, a1a,

k_1b = k_2b, and k+1b = k+2b), up to 2.7 % for b1b.

Can the two sites be distinguished using high
concentrations alone?
The advantage of using a high concentration is that quite

long stretches of record can be obtained that originate

from one channel only, at least for the muscle nicotinic

Maximum likelihood estimation of rate constantsJ Physiol 547.3 719

Figure 13. The progress of
fitting in one example
The likelihood (vertical axis) that
corresponds with the values of a2

and b2 that are reached at various
stages during the fitting process –
notice the final crawl along a
diagonal ridge near the maximum.
Along the ridge, the values of a2

and b2 change roughly in parallel
(so the efficacy, E2 = b2/a2, does
not change much), and the
likelihood increases only slowly.



Jo
u

rn
al

 o
f P

hy
si

ol
og

y

and glycine receptors which have the right amount of

desensitisation. The disadvantage is that there are few

singly liganded openings. It is quite common for channel

properties to be analysed by use of high concentrations

only, so it is natural to ask what can and cannot be inferred

from such records. To do this, 1000 fits were done on

simulated data obtained with an agonist concentration of

10 mM, which is of the order of the EC50. The simulations

were done with the mechanism in scheme 2 (Fig. 1), withbD = 5 s_1 and aD = 1.4 s_1, as before, and the true values of

the other rate constants shown in Table 1 (‘true 1’). The

results were fitted with scheme 1 (Fig. 1) after removing

the desensitised periods by fitting in bursts (tcrit = 5 ms),

without CHS vectors. The two sites were independent. As

usual the ‘diliganded’ parameters were well defined: for a2,

CV = 6.8 % and bias = 2.3 %; for b2, CV = 7.0 % and

bias = 1.1 %; and for total dissociation rate from diliganded

receptors, k_2a + k_2b, CV = 4.7 % and bias = _0.6 %. In a

single ‘experiment’ out of the 1000, the predicted fit of the

apparent open and shut times was good, as shown in

Fig. 16A and B. The apparent open time distribution

(Fig. 16A) was essentially a single exponential, as expected

from the lack of singly liganded openings at high

concentration: over 99 % of the area was in a component

with a time constant of 1.43 ms in the asymptotic HJC

distribution, and this fits the histogram. In the predicted

ideal distribution (dashed line in Fig. 16A and B), 99 % of

the area is in a component with time constant of 0.342 ms,

much shorter because of missed brief shuttings (the true

value would be 0.5 ms, but the fitted value of a2 was

unusually high in this particular experiment, 2920 s_1,

rather than 2000 s_1.

In view of the absence of singly liganded openings at 10 mM

it is not surprising that the estimates of a1a, b1a, a1b and b1b

are all undefined in this case –  the values are all over the

D. Colquhoun, C. J. Hatton and A. G. Hawkes720 J Physiol 547.3

Figure 14. Predicted fits to a simulated experiment, when the fit assumed, incorrectly, that
the two sites were independent
A single low concentration of ACh (30 nM) was used, with EC50 constraint and fitted in bursts. The rate
constants used for simulation are in Table 1 (labelled ‘true 2’), but the fit applied the constraints in eqns (9)
and (10). A and B, predicted fits to apparent open and shut time, as in Fig. 6. C, conditional distribution of
open times for apparent openings that are adjacent to the shortest shut times (25 – 100 ms). D, observed and
predicted conditional mean open time plot (as in Fig. 6D and Methods). E, as in C but for apparent open
times that are adjacent to shut times in the range 0.5–10 ms.
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place. On the other hand, the association and dissociation

rate constants for the two sites separately are defined,

though the estimates are not very precise (Fig. 16C–E). For

k_1a (Fig. 16C), CV = 34 %, bias = +10 %. For k+1a (Fig. 16D),

CV = 9.6 %, bias = +2.5 %. For k_1b (Fig. 16E), CV = 6.3 %,

bias = _2.2 % and for k+1b (Fig. 16F), CV = 15 %, bias =

+2.3 %. The equilibrium constants calculated from these

rates are Ka (Fig. 16G, CV = 32 %, bias = +6.7 %) and Kb

(Fig. 16H, CV = 16 %, bias = _2.3 %). With this amount

of scatter a 2-fold difference in equilibrium affinities of the

two sites would be barely detectable.

Non-independent binding sites
Up to now, the two binding sites have always been

assumed to be different from each other, but independent

of one another. If it is allowed that the binding of the

agonist to one site can affect the binding to another site, so

the constraints in eqns (9) and (10) can no longer be

applied, there are 13 free rate constants to be estimated,

rather than 10. In Figs 14 and 15, the effects were

investigated of fitting as though the two sites were

independent when they are not. We now describe attempts

to fit all 13 rate constants in the case where the sites are not

independent.

In every case that has been investigated so far it has proved

impossible to get good estimates of all 13 rate constants

under conditions that can be realised in practice (this is true,

at least, for the values of the rate constants used here).

In particular, they cannot be obtained under conditions

where the number of channels that are present in a low-

concentration record is unknown. At high concentrations it

is possible to obtain long stretches of record that are known

to contain only one channel, but high concentration records

alone do not contain enough information about singly

liganded states to allow estimation of all 13 rate constants.

The same is true if high concentration records are fitted

simultaneously with low concentration records, the latter

being fitted in bursts because of the unknown number of

channels in the patch. Fixing one of the rate constants, or

determining one of them from a known EC50, does not help

either, and improving the resolution from 25 ms to 10 ms

Maximum likelihood estimation of rate constantsJ Physiol 547.3 721

Figure 15. Distributions of some of the rate constant estimates obtained from 1000 fits under
the same conditions as Fig. 14
The fits assumed, incorrectly, that the two sites were independent. The arrows mark the true values of the rate
constants.
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does not solve the problem. In most of these simulations, the

problem lay in separating the values of k+1a and k+1b, the

estimates of all the other rate constants being good or at least

acceptable. The estimates of these two rate constants were

very smeared, with a tendency to approach unreasonably

large values, no doubt as a result of the strong positive

correlation seen between them (their ratio was better

determined). Values for k_1b were poor too. Despite the near-

useless estimates of at least two of the rate constants, good

predictions of the data (such as those shown in Figs 6 and 14)

could be obtained, as might be expected from the large

number of free parameters.

Examples of poorly estimated parameters are shown in

Fig. 17. These are from an attempt to fit all 13 parameters

with a large amount of high-resolution data, three low

concentrations (10 nM, 30 nM and 100 nM) fitted simul-

taneously, with a resolution of 10 ms. However all three

records were fitted in bursts (tcrit = 3.5 ms), with CHS

vectors, to avoid any assumption about the number of

channels in the patch. All the parameters were reasonably

D. Colquhoun, C. J. Hatton and A. G. Hawkes722 J Physiol 547.3

Figure 16. Analysis of 1000 fits to simulated experiments at a single high (10 mM)
concentration of ACh
The arrows mark the true values of the rate constants. A, apparent open times from a single simulated
experiment, with the HJC distribution predicted by the fit superimposed on the histogram (resolution
25 ms); the dashed line is the predicted true distribution. B, apparent shut times (up to tcrit = 5 ms) as in A.
C–F, distributions of 1000 estimates of the association and dissociation rate constants. G–H, distributions of
the 1000 estimates of the microscopic equilibrium constants, Ka and Kb, for binding to the two sites
(calculated from the fitted rate constants).
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estimated apart from the three shown: k+1a (Fig. 17A) and k+1b

(Fig. 17C) are very smeared, and k_1b (Fig. 17B) is poor. This

is a reflection of the strong positive correlation between k+1a

and k+1b, (Fig. 17D); the correlation coefficient was +0.61 in

this plot (which is curtailed by an upper limit of 1010
M

_1 s_1

placed on any association rate constant during the fit. The

correlation coefficient between estimates of the equilibrium

constants for the first bindings, K1a and K1b, was very strong

indeed (+0.99995 in this case).

The only way in which it has proved possible, so far, to get

good estimates of all 13 rate constants, is by simultaneous

fit of records at two concentrations, with the assumption

that only one channel is present at the low concentration(s)

as well as at the high concentration(s). In other words the

low concentration records are not fitted in bursts, but

the likelihood is calculated from the entire sequence,

including all shut times. Good estimates of all 13 free rate

constants could be obtained by simultaneous fit of two low

concentrations (10 nM and 100 nM), or by simultaneous fit

of a low concentration (30 nM) and a high concentration

(10 mM), as long as it was supposed that the low

concentration record(s) originated from one channel. In

this case the entire shut time distribution is predicted by

the fit, not only shut times up to tcrit. Fits predicted from

one such simulated experiment are shown in Fig. 18A–D.

The distributions of both apparent open times (Fig. 18A
and C) and of apparent shut time (Fig. 18B and D) are

predicted well by a single set of rate constants at both

concentrations. The shut time distributions (Fig. 18B and

D) include all shut times (above tres), and the longer time

between activations at the lower concentration is obvious.

The estimates of all 13 rate constants found in 1000

such fits were good, but the only ones shown are the

distributions of k+1a, k_2b and k+1b (Fig. 18E–G). The

estimates of these are now quite good, whereas the estimates

of these rates shown in Fig. 17A–C (with more and better

data, but fitted in bursts) were bad. The estimates of k+1a and

k+1b are now essentially independent (Fig. 18H), rather

than strongly correlated (Fig. 17D). The set of 1000 fits

exemplified in Fig. 18 gave CVs of about 5 % or less for a2,b2, a1a, a1b, k_2a, (k_2a + k_2b), and for the corresponding

equilibrium constant E2 (all with bias less than 0.4 %); CVs

of about 5–10 % were found for b1b, k+2a, k_1a, k+1a, k+1b, and

for the corresponding equilibrium constants E1b, K2a, K1b

(all with bias less than 1 %). The least precise estimates were

for b1a, (CV = 11.5 %, bias = +0.84 %), k_1b (CV = 11.4 %,

bias = +0.96%), k_2b (CV = 18.7 %, bias = _1.2 %), k+2b

(CV = 17.6 %, bias = _0.7 %), and for E1a (CV = 12.8 %,

bias = +1.3 %), K2b (CV = 13.1 %, bias = +0.1 %), K1a

(CV = 12.6 %, bias = +1.2 %).

Maximum likelihood estimation of rate constantsJ Physiol 547.3 723

Figure 17. Non-independent sites
Estimates of k+1a (A), k_1b (B) and k+1b (C) from 1000 simulated fits using simultaneous fit of three
concentrations of ACh (10 nM, 30 nM and 100 nM), with a resolution of 10 ms. All three records were fitted in
bursts (tcrit = 3.5 ms), using CHS vectors. D, plot of the estimate of k+1b against that of k+1a from the same fit
(an upper limit of 1010

M
_1 s_1 was placed on association rate constants in these fits). The arrows mark the true

values of the rate constants.
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DISCUSSION
Diliganded openings
The first major conclusion from this study is that good

estimates of the rate constants that relate to diliganded

openings can be obtained under all the circumstances that

have been tested. This is true if an association rate or EC50 is

fixed at an incorrect value, if desensitisation is present in

the data but is not fitted, and it is true even if the fitting

process assumes that the two binding sites are independent

when they are not (at least for the examples tested here).

The analyses all assume a resolution of 25 ms, and they

D. Colquhoun, C. J. Hatton and A. G. Hawkes724 J Physiol 547.3

Figure 18. Non-independent sites
Illustration of the prediction of the distribution of apparent open and shut times by the rate constants
estimated by a single simultaneous fit to two low concentration of ACh (10 nM and 100 nM) simulated
experiments. In this case it was assumed that one channel was present throughout both records so the entire
shut time distribution is fitted (B and D). The two sites were not assumed to be independent in this case, and
good estimates were obtained for all 13 free rate constants (see text). In particular the three rate constants
which could not be estimated when the number of channels was not assumed (Fig. 17A–C) are now estimated
well (E–G), and the estimates of k+1a and k+1b are now essentially uncorrelated (H). The arrows mark the true
values of the rate constants.
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make no assumptions about the number of channels in the

patch. Our results suggest that the estimate of the opening

rate constant for the diliganded channel, b2, is at least as

good as that for its shutting rate constant, a2, so there is,

using the HJCFIT method, no need to estimate the former

by extrapolation as is usual with the MIL method (see, for

example, Salamone et al. 1999). Estimates of the total

dissociation rate from diliganded receptors (k_2a + k_2b)

are of similarly good quality. We thus cannot agree with

Akk & Steinbach (2000) when they describe b2 and binding

rates as being so fast that it is ‘close to impossible to

evaluate them independently’.

These three quantities alone are sufficient to describe the

characteristics of the receptor that are of physiological

importance. In particular, they allow calculation of a good

approximation to the mean length of the diliganded burst

of openings, and it is these that carry most of the current

through the endplate membrane at the neuromuscular

junction. The current carried by monoliganded openings

is very much smaller and quite negligible from the

physiological point of view. For diliganded channel

activations, the mean number of channel openings per

activation will be, to a good approximation (neglecting

returns from a singly-liganded state):

b2
µob = 1 + ————. (14)

k_2a + k_2b

The mean open time is 1/a2, so the mean open time per

burst will be:

µob
µtob = ——. (15)a2

Because the large majority of shut times within an

activation are very short sojourns in A2R (mean length

1/(b2 + k_2a + k_2b) ∆ 15 ms), the total shut time per burst

is:

µob _ 1
µtsb = ——————, (16)b2 + k_2a + k_2b

and the approximate mean activation length, mtob +mtsb ∆ mtob should be a good estimate of the time constant

for decay of synaptic currents. For a more complete

account of the relationship between single channel events

and the time course of macroscopic currents, see

Colquhoun et al. (1997) and Wyllie et al. (1998).

Monoliganded channels
The second major conclusion is that all the rate constants

that are specific for one site or the other are harder to

estimate, but good estimates can be obtained as long as the

two sites are independent. This can be done without

knowing the number of channels in the patch either by (a)

using a single low concentration of agonist in conjunction

with an EC50 value, or (b) using simultaneous fitting of a

high and a low concentration record. Of course these

conclusions are dependent, as in any simulation study, on

the values for the true rate constants (those that are used to

simulate data) being close to the actual values that hold for

real receptors. The ‘true rates’ used here are similar to our

current best estimates (Hatton et al. 2003), but those

estimates are, for the monoliganded rates, not yet very

precise. In fact the estimates of the monoliganded rates

from real data showed rather more variability than one

might have expected from the simulation results. The

reason for this is not yet known. It might be that there are

genuine differences in these rates from one experiment to

another, or it might be that the ‘true rates’ used here are

not sufficiently close to the real values.

Independence of the two binding sites
If the two binding sites are not independent, then

simulations suggest that it is no longer possible to estimate

all 13 free rate constants, in the absence of knowledge

of the number of channels in the patch. The only

circumstance under which we found it possible to estimate

all 13 rate constants was by simultaneous fit of either two

low concentration records (Fig. 18), or a high and a low

concentration record, for which it was known that the low

concentration record(s) contained only one channel in the

patch. There is usually no reliable way to know that a low

concentration record contains only one channel, so it will

not usually be possible to do this in practice.

Furthermore, when simulations were done of a channel

with non-independent sites, it was found (Fig. 14) that

good predictions of the data could be obtained when the

fitting process assumed, incorrectly, that the sites were

independent. Although such fits still gave good estimates

of the ‘diliganded’ rates, at least two of the ‘monoliganded’

rates were in serious error, though this was not apparent

from the analysis. This means that detection of non-

independence is likely to be quite hard in practice, a fact

that might account for the many conflicting results in the

literature. However in the example given, the conditional

mean open time plot (Fig. 14D) does show that there is a

problem with the fit, as do conditional open time

distributions over certain ranges of adjacent shut times

(Fig. 14E), though not over others (Fig. 14C). This

illustrates the value of looking at things other than the

predicted fit to apparent open and shut times only.

The performance of the HJCFIT method
The only other implementation of the maximum

likelihood fitting of an entire sequence is the MIL program

(Qin et al. 1996; see Methods). We have made no direct

comparison between the results of fitting with HJCFIT and

with MIL, but some general observations can be made.

(1) The distributions of estimates from HJCFIT have been

investigated (this paper), whereas those from MIL have

not.

Maximum likelihood estimation of rate constantsJ Physiol 547.3 725
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(2) The HJCFIT program incorporates the ability to do

repeated simulations of the sort described here for

essentially any mechanism and values of rate constants. A

utility program, SIMAN, is available to inspect the

outcome of such simulations.

(3) The missed event correction used by HJCFIT is exact,

whereas that used by MIL is approximate. Strictly speaking

the asymptotic form used in HJCFIT for intervals longer

than 3tres is an approximation but HJCFIT allows a visual

check that it is essentially identical with the exact form in

the region that is used (e.g. Fig. 6B). The asymptotic form

has the advantage that it has the form of (the right number

of) exponential components, the times constants and areas

of which are printed. The practical importance of this

difference in method for making the missed event

correction has not been investigated.

(4) In HJCFIT the start and end vectors for each group of

openings can be calculated from the exact HJC theory.

This does not matter much if the groups of openings are

long (as is usually the case in high concentration records)

but it is shown here to be of great importance when

individual activations are fitted as a group at low agonist

concentrations. This feature allows records to be used

when they contain an unknown number of channels.

(5) In HJCFIT it is possible to use a specified value of an

EC50, determined independently, to calculate the value of

any specified rate constant from the values of all the others.

This reduces by one the number of free parameters that

have to be estimated.

(6) In HJCFIT, the whole covariance matrix is calculated at

the end of a fit, so as well as approximate standard

deviations for the estimates, the correlation coefficients

between all possible pairs of estimates are also printed.

These can be very useful for detection of poorly defined

parameters.

(7) In HJCFIT there are more ways to test the quality of the

fit, once it has been done. Whereas MIL displays only open

and shut time distributions at the end of a fit, HJCFIT can

display also the following tests.

(a) The conditional distribution of apparent open times,

for open times that are before, after or adjacent to shut

times in a specified range. The ability to plot separately

‘before’ and ‘after’ is potentially useful for mechanisms

that behave irreversibly (e.g. Wyllie et al. 1998), though it

is not used in this paper.

(b) The relationship between the mean of the conditional

apparent open time distribution and the adjacent shut

time (range).

(c) The dependency plot.

In all of these cases the prediction of the observed

distributions is calculated from the fitted rate constants

(and the resolution) by exact HJC methods.

Correlations
Two entirely different sorts of correlation are relevant to

this work.

(1) The correlation between open and shut times. This is

inherent in the mechanism, it tells us about how states are

connected (Fredkin et al. 1985; Colquhoun & Hawkes,

1987; Blatz & Magleby, 1989), and the maximum

likelihood takes into account fully the information from

such correlations in the experimental record. The ability of

the mechanism, and the fitted rate constants to describe

correctly this sort of correlation is what is tested by the

conditional distributions, the conditional mean plot, and

the dependency plot (Methods and Figs 6 and 14).

(2) Statistical correlation between estimates of parameters.

This sort of correlation is not a property of the mechanism,

but is a property of the estimation method. It imparts no

interesting information, and it disappears if the data are

sufficiently precise. It is this sort of correlation that can be

estimated from the covariance matrix after fitting a single

experiment, and shown as a graph in the case of repeated

simulations (see Figs 2D, 3E, 4E, 5E, 5F, 8G and 11, and

Table 3). There is a simple intuitive explanation for the

strong positive correlation between the estimates of a2 andb2 (Figs 2D, 3E and 12A and B). The basis of the

explanation is that the length of the activations (bursts) is

D. Colquhoun, C. J. Hatton and A. G. Hawkes726 J Physiol 547.3

Figure 19. Two solutions for missed events problem in
the simplest case
The two curves are plots of eqns (121) and (122) in Colquhoun &
Hawkes (1995b, p. 456), for the example cited there in which the
apparent mean open and shut times are 0.2 ms and 2.0 ms
respectively, and the resolution was tres = 0.2 ms. The intersections
show that these simultaneous equations are satisfied either by true
open and shut times of 0.299 and 0.879 ms respectively (the ‘slow
solution’), and equally by true open and shut times of 0.106 and
0.215 ms respectively (the ‘fast solution’).
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quite well defined by the data. But the brevity of the

shuttings that separate the individual openings in the burst

means that many of them are not detected (with a

resolution of 25 ms, and a mean short shut time of 15 ms,

more than 80 % will be missed). This means that the length

of individual openings, and the number of them in a burst,

are rather poorly defined, though defining them is the

essential core of the binding–gating problem. A large value

of a2 means that individual openings are short, so the

observed mean burst length can be fitted only by

postulating a large number of openings per burst,

something that can be achieved (see eqn (14)) by having a

large value for b2 also. This argument suggests that

experiments that happen to produce a large value of a2 will

also produce a large value of b2, as was observed in every

case.

Initial guesses and the existence of two solutions
It is known that the simplest possible case of the missed

event problem (one open state and one shut state) has two

exact solutions in general (Colquhoun & Sigworth, 1983;

see Colquhoun & Hawkes, 1995b). This is illustrated in

Fig. 19.

The graph shows plots of eqns (121) and (122) in

Colquhoun & Hawkes (1995b, p. 456), for the example

cited there in which the apparent mean open and shut

times are 0.2 ms and 2.0 ms respectively, and the

resolution was tres = 0.2 ms. The intersections show that

these simultaneous equations are satisfied either by true

open and shut times of 0.299 and 0.879 ms respectively

(the ‘slow solution’), and equally by true open and shut

times of 0.106 and 0.215 ms respectively (the ‘fast

solution’). It has been shown (Ball et al. 1990) that these

two solutions have near identical likelihoods. Something

very similar appears to happen in the far more complex

schemes analysed here. In Fig. 2 it was shown that, with

some initial guesses, the fit could converge in some cases to

give a fit with the correct values of a2 and b2, and

sometimes to a fit in which both values were much larger.

Both fits had very similar likelihoods (Fig. 2C). Figure 2D
shows that the strong positive correlation between the

estimates of a2 and b2 that was seen in all experiments,

extends over the entire range of a2 and b2 values in such a

case (though it is rather non-linear in this case), but that

the a2, b2 values almost all fall into one or the other of two

clusters, one of which (the slow solution) corresponds to

the correct values of a2 and b2, and the other of which is

analogous to the other (fast) solution. One may conjecture

that missed event problems for any mechanism will always

have, in this sense, two solutions.

In summary, the HJCFIT method, as implemented here,

can provide good estimates of the main ‘diliganded’ rate

constants that are needed to solve the physiological

binding–gating problem, without assuming anything

about the number of channels in the patch, and with data

of the usual resolution of single channel recordings. These

estimates are surprisingly immune to various sorts of

errors in the assumptions. The rate constants for each of

the two binding sites separately can also be obtained,

though only if it is assumed that the two sites are

independent. These methods are applied to experimental

data in the accompanying paper (Hatton et al. 2003).
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