Biophysical Journal

Biophysical Society

MCMC for lon-Channel Sojourn-Time Data: A Good

Proposal

Frank Ball'.*

School of Mathematical Sciences, University of Nottingham, Nottingham, UK

Stochastic modeling of ion-channels
has come a long way since the patch-
clamp technique enabled the current
flowing through a single channel to
be recorded. But a kinetic model is
only as good as the reliability of its
rate constants, and obtaining good
estimates of parameter uncertainty re-
mains challenging. The article by
Epstein et al. (1) in this issue of
the Biophysical Journal presents an
exciting, new methodology for making
inferences about such parameters.

The gating mechanism of a single
ion-channel is typically modeled as
a finite-state continuous-time Markov
chain, whose states are aggregated
into two classes (either open or shut).
The theory of such models of single-
ion channels was largely worked out
~30 years ago (e.g., Colquhoun and
Hawkes (2) and Fredkin et al. (3)). Esti-
mation of rate constants of a model
from single-channel recordings is
more problematic. The aggregation of
states means that distinct models of
channel gating can yield probabi-
listically indistinguishable observable
processes. Another problem is that sin-
gle-channel current recordings are cor-
rupted by noise and low-pass filtering,
and are sampled at finite intervals. The
sequence of open and closed sojourns
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of a channel is then reconstructed, often
using some kind of threshold-crossing
algorithm, which results in the loss of
brief sojourns in either the open or
shut classes of states. Failure to account
correctly for such missed brief sojourns
leads to biased estimates.

Two main approaches have been
used for overcoming the problem of
missed brief sojourns. One is to extend
the theory of aggregated Markov pro-
cesses to include missed brief sojourns,
and incorporate it into maximum-like-
lihood (ML) fitting (Colquhoun et al.
(4,5)). This approach underpins the
methodology in Epstein et al. (1). The
other is to base inference directly on
the current record by explicitly incor-
porating a model for noise and low-
pass filtering, as done, for example,
by Fredkin and Rice (6) and Qin
et al. (7).

These ML procedures yield estimates
of the rate constants, together with asso-
ciated standard errors. However, the
latter assume that the estimates are
approximately normally distributed,
which may be unreliable for ion-chan-
nel data (Fredkin and Rice (6)). Also,
whereas estimates of channel prop-
erties (such as the equilibrium proba-
bility that the channel is in an open
state) are readily available using the es-
timates of the rate constants, standard
errors for those estimates are not.
Further, although problems identifying
rate constants may be detected from
correlations between their estimates,
other more subtle problems, for

example those involving nonlinear de-
pendencies, are harder to unravel.

ML belongs to classical statistics,
in which properties of estimators are
derived from hypothetical independent
repetitions of an experiment under the
same conditions. An alternative con-
ceptual approach to statistical inference
is the Bayesian one, in which, before an
experiment, an investigator expresses
his/her beliefs about the unknown pa-
rameters as a (prior) probability distri-
bution. The results of the experiment
update the prior distribution (according
to Bayes’ theorem) to yield a posterior
distribution of the unknown parame-
ters. Despite some zealous advocates,
Bayesian methods were not adopted
widely, partly because the posterior dis-
tribution involves a normalizing con-
stant, which in many applications is a
high-dimensional intractable integral,
and consequently (even numerically)
unavailable. All that changed ~25 years
ago, with the rapid explosion in the use
of Markov chain Monte Carlo (MCMC)
methods, which increased greatly the
applicability of Bayesian inference to
real-world problems, including many
that were computationally inaccessible
to classical methods.

The idea of MCMC methods is to
construct a discrete-time Markov chain
(not to be confused with the contin-
uous-time Markov chain used to model
the ion channel gating mechanism),
whose equilibrium distribution is the
posterior distribution of the unknown
parameters (usually rate constants), 6
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say, in that ion-channel model. The
discrete-time Markov chain is then
simulated until it has reached equilib-
rium, after which further simulation of
the chain gives a (usually correlated)
sample from the posterior distribu-
tion for 6, thus enabling inferences
to be made concerning the parameters
that govern the ion-channel model. A
general way to construct the discrete-
time Markov chain is by the Metrop-
olis-Hastings algorithm, in which given
the current state (6, say) of the chain,
first a new state &, is proposed (i.e.,
simulated) from a specified proposal
distribution, which typically depends
on the current state 6,. The proposed
state is accepted (or rejected) according
to a probability p(6,, 8'), which depends
on both the current and proposed states.
In practice, this involves generating a
random number U that is uniformly
distributed on the interval (0, 1); if U
is less than p(f,, '), then the proposed
state is accepted and becomes the next
state of the chain, i.e., 6, = ¢, other-
wise the next state is given by the cur-
rent state, i.e., 6,1 = 6,. The process
is then repeated, with the current state
now being 0,1, and so on. The formula
for the acceptance probability p(6,, ')
involves the posterior probability den-
sities of 6, and @', only through their
ratio, so the normalizing constant disap-
pears.

The Metropolis-Hastings algorithm
provides a general way of constructing
a discrete-time Markov chain with
the required equilibrium distribution,
but designing good MCMC samplers
(i.e., choosing good proposal distribu-
tions) is often highly challenging. On
the one hand, if proposals are too timid
(i.e., very close to the current state),
then their acceptance probability is
high but the consequent jump of the
Markov chain is small. On the other
hand, if proposals are too bold then
their acceptance probability is usually
low and the Markov chain is likely
to stay at its current state. Either

way, the resulting MCMC sampler
will have poor mixing properties, i.e.,
it will not sample the parameter space
well. At best, this will result in a
computationally inefficient sampler.
More seriously, erroneous inferences
may result if parts of the parameter
space having relatively high posterior
probability are not explored properly.

Although several MCMC samplers
have been proposed for ion-channel
inference directly from single-channel
recordings, Epstein et al. (1) present
the first MCMC sampler for inference
based on reconstructed sequences of
open and closed sojourn times, which
accounts correctly for missed brief
events. The authors use a two-step
MCMC strategy. First they use a pilot
MCMC sampler to locate approxi-
mately the mode (peak) of the posterior
distribution and then they use a different
MCMC sampler to estimate the poste-
rior distribution. The output from the
latter overcomes many of the shortcom-
ings of ML-based estimation indicated
above. Application to simulated data
demonstrates that the methodology
works for a model of the muscle nico-
tinic receptor with 10 free parameters.
Application to experimental data from
the same receptor channel demonstrates
clear advantages of the procedure over
ML estimation. Estimates of the mar-
ginal posterior distributions of individ-
ual rate constants show that whereas
some are well approximated by the
normal distributions predicted by
asymptotic ML theory, others are not,
with the uncertainty in their values be-
ing appreciably underestimated by the
ML approach. Equally useful is that
estimates of (observable and unobserv-
able) channel properties now have mea-
sures of their posterior uncertainty.

As the authors state, their two-
step MCMC strategy relies on the
assumption that the posterior distribu-
tion is unimodal, and more discussion
of what happens when that assumption
is not met would be welcome. Also,
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how do these samplers perform for
poorly resolved models (for example,
those with flat ridges of posterior prob-
ability density, as happens when param-
eters of a model are close to being
unidentifiable)? A very challenging, di-
rection for future research is the use of
MCMC as a tool for Bayesian discrim-
ination between rival gating mecha-
nisms for a channel, as in Hodgson
and Green (8). That is all for the future.
For the present, the MCMC methodol-
ogy of Epstein et al. (1) is an important
addition to the ion-channel toolbox; a
good proposal, gladly accepted!

REFERENCES

1. Epstein, M., B. Calderhead, ..., L. G. Sivi-
lotti. 2016. Bayesian statistical inference in
ion-channel models with exact missed event
correction. Biophys. J. 111:333-348.

2. Colquhoun, D., and A. G. Hawkes. 1982. On
the stochastic properties of bursts of single
ion channel openings and of clusters of bursts.
Philos. Trans. R. Soc. Lond. B Biol. Sci.
300:1-59.

3. Fredkin, D., M. Montal, and J. A. Rice. 1985.
Identification of aggregated Markovian models:
application to the nicotinic acetylcholine
receptor. In Proceedings of the Berkeley
Conference in Honor of Jerzy Neyman
and Jack Kiefer, Vol. 1. L. L. Cam and R.
Olshen, editors. Wadsworth, Belmont, CA.
269-289.

4. Colquhoun, D., A. G. Hawkes, and K. Srod-
zinski. 1996. Joint distributions of apparent
open and shut times of single-ion channels
and maximum likelihood fitting of mecha-
nisms. Philos. Trans. R. Soc. Lond. A.
354:2555-2590.

5. Colquhoun, D., C. J. Hatton, and A. G.
Hawkes. 2003. The quality of maximum like-
lihood estimates of ion channel rate constants.
J. Physiol. 547:699-728.

6. Fredkin, D. R., and J. A. Rice. 1992.
Maximum likelihood estimation and identifi-
cation directly from single-channel record-
ings. Proc. Biol. Sci. 249:125-132.

7. Qin, F., A. Auerbach, and F. Sachs. 2000. A
direct optimization approach to hidden Mar-
kov modeling for single channel kinetics.
Biophys. J. 79:1915-1927.

8. Hodgson, M. E. A., and P. J. Green. 1999.
Bayesian choice among Markov models of
ion channels using Markov chain Monte
Carlo. Proc. R. Soc. Lond. A. 455:3425-3448.


http://refhub.elsevier.com/S0006-3495(16)30456-8/sref1
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref1
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref1
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref1
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref2
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref2
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref2
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref2
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref2
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref4
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref4
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref4
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref4
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref4
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref4
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref5
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref5
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref5
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref5
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref6
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref6
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref6
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref6
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref7
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref7
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref7
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref7
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref8
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref8
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref8
http://refhub.elsevier.com/S0006-3495(16)30456-8/sref8

	MCMC for Ion-Channel Sojourn-Time Data: A Good Proposal
	References


